
76 

3. MOSSAKOVSKII V.I., Pressure of a staml f almost circular planform on an elastic half- 
space. PMM, 13, 6, 1954. 

4. MOSSAKOVSKII V.I. and KOWRA A-B., On a method of solving potential theory problems and 
its applications in elasticity theory, Dokl. Akad. Nauk UkrSSR, Ser. A, 1, 1976. 

5. GUBENKO V.S. and MOSSAKOVSKII V.I., Pressure of an axisymmetric annular stamp on an elastic 
half-space, PMM, 24, 2, 1960. 

6. ALEKSANDROV V.M., Axisymmetric problem of the action of an annular stamp on an elastic 
half-space, Inzh. Zh., Mekhan. Tverd. Bela, 4, 1967. 

Translated by M.D.F. 

PMM V.S.S.R.,Vol.51,No.l,pp.76-82r1987 0021-8928187 $lo,ooto.oo 
Printed in Great Britain 01988 Pergamon Press plc 

CERTAIN CONTACT PROBLEMS OF THE THEORY OF ELASTICITY 
FOR AN ANNULAR SECTOR AND A SPHERICAL LAYER SECTOR* 

M.I. CHEBAKOV 

ltyo static contact problems of the theory of elasticity on the impression 
of a stamp in the circular boundary of an annular sector (Fiq.l), and 
in the spherical surface of a spherical layer sector (Fig.2) are examined. 
By using homogeneous solutions the problems are reduced to an investiqation 
of the well-studied integral equations that occur in the investigation 
of analogous problems, respectively, for a ring and a spherical layer, 
and infinite systems of linear high-quality algebraic equations of the 
type of the normal Poincar&Koch systems. 

A proof is also presented of the generalized orthogonality relationships (GOR) used for 
homogeneous solutions of the theory of elasticity on the steady vibrations of a spherical 
layer in the case of axial symmetry and a rinq. In a special case, the GOR for a spherical 
layer agrees with those already known /l/, where the static problem is considered. Analoqous 
GOR for a ring are proved by another method in /2, 3/, where the GOR are derived in /3/ as a 
corollary of the Betti reciprocity theorem for a broad class of media and domains. 

The GOR are derived below as a corollary from values of a certain integral of the 
combination of two different solutions of the Lam& equation in the qeneral case with arbitrary 
boundary conditions. The value of the integral is expressed in terms of boundary functions 

/4/. Values of the integral of both the homogeneous (generalized orthoqonality condition), 
and the inhomogeneous solutions are used in deriving the infinite systems. 

Fig.1 Fig.2 
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1. In a spherical r,e,cp coordinate system we consider the homogeneous solutions of the 
Lam4 equations in axisymmetric problems of the steady vibrations of a spherical layer R,<r< 
Ra, whose edges r= Rr and r=R, are: a) fixed, b) stress-free, or c) the edge r=Rr is 
fixed while r = R2 is stress free (or conversely). The eigenfunctions of these problems will 
be sought in the form 

t+(r, cp)= W,"(r) Pak+,(cosm)eiO~, (1.1) 

ulp (r, cp)== V,O(r) -& P,,_l,, (cos rp) eiot 

where Umir, U,k are projections of the displacement vector, respectively, on the 'p and r axes, 
P,,_t,, (coscp) are Legendre functions, o is the frequency of vibration, t is the time, and 
ai, (A. = 1, 2, 3,. . .) are eigenvalues. To determine W,"(r) and V,O(r) we obtain a system of 
ordinary differential equations 

&(wk",vp")= prvko(l + 2pvk0' -[(h + 2p)(ah.* - ',/4)re1- 
po2r]Vk0+(h+p)Wko’f2(h+2p)r-1Wk0=0 

Ld(Wko,Vko)~((h + 2p)rWRa +2(h+2p)Wi,"'- 
[2(h + 2p) + (a$ - l/d)p - p&a]r-lWkO - 
(h + p)(ak* - l/4)lik0' + (X + 3p)(ak2 -l/d) r-‘Vko= 0 

(1.2) 

(1.3) 

where A,p are the Lam6 coefficients, p is the density, and L1 and L, are appropriate dif- 
ferential operators. 

The boundary conditions take the form 

WC (R,) = Wk” (RJ = Vk” (R,) = vk” (R,) = 0 

urk* (R,) = Urk* (RJ = Tk* ‘il) = Tk* (R,) = 0 

W,“(R,) = V,’ (R,) = $k* (R,) = rk* @a) = 0 

(1.4) 

The stress tensor components here are 

uvk = u:k.(r) Pab_l/r (cos (p) eiot 

d 
TIVf = Tk* b) x Pak-I/, (cos ‘P) e 

iot 

(Jvl; C 
L 

atk (r) Pak_I,,(cos ‘p) - &r-‘V,“(r) ctg ‘p j< 

+ Pak_l,* (cos @] eiat 

t&k 2hr-‘Wk” (r) + (h + 2p) WY” - h (ak2 - l/d) r-‘VkJ 

TV* = p (- rmlVkO + VkO’ _1- r-‘Wk’) 

o*,$ = 2 (h + p) r-‘Wko + hWkO’ - (k + 2p) (ak2 - ‘/() r-‘Vko 

(1.5) 

Theorem. If problem (l.Z)-(1.4) has just a simple eigenvalues and akZ#ana then the 
following GOR hold: 

Proof. Using (1.2) and (1.3), we consider the obvious equalities 

R. 

S [V,‘L., (Wko, V,‘) - Vk”LZ (WC, If,,“)] r dr = 0 
R. 

R. 

from which we find, respectively 

- (vkov,,‘) (h f 2p) (urp” - u,‘) = p [r’vk”v,* - r”v~“vko’]$ + 
(a + p) [@vk’wR) - (rvcw?)l + 2 (a + 2d [tVkoWno) - 
(v:wko)]; - (wk’w,,O) p (at” - ad) = 

(A + 2p) [r”BWk”WP’ - r’w$wk”]$ - 

(h+P)@na-- /I) (rv,mwko) f th f p) @k” - ‘/P) (rv&o’wno) + 

(A + $1 (a,’ - %) (v$wk”) - th + 31r) bka - ‘k) (VkoW$) 

(1.7) 
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Furthermore, we consider the expression 

(ar" - %2)Wltn" (1.8) 

where Wkn” is given by relationship (1.6). We replace [To,,* and tx* in (1.8) by expressions 
using formulas from (1.5) and we expand the parentheses, after which we replace corresponding 
components in the relationships newly obtained by expressions on the right sides of (1.7). 
Integrating by parts, we evaluate the integral (1.8) and we add and subtract the expression 

[2hrW,“W,” + 3” (a** - 1/4)rW,oVh.0 + p (an2 - l/4) r~~0Vno5: 

to the relationship obtained. 

Iam; 
this 

Regrouping the components in an appropriate manner, we finally obtain 

It follows from (1.3) that Wp,,‘= 0 for any boundary conditions (1.4) if an2i CQ,.~. 
The derivation of (1.9) is not related to the form of the boundary conditions for the 
equations, therefore, they will be valid for any inhomogeneous boundary conditions. In 
case, ak = 12 should be considered in the particular inhomogeneous solutions of the form 

(1.1) and formulas (1.9). The case when one of the solutions in (1.9) is inhomogeneous while 
the other is homogeneous is needed to evaluate integral (3.12). 

As is seen from the proof, the GOR (1.6) hold even for o = 0. In this case they agree 
with what is known /l/. 

2. In a cylindrical r,cp,Z coordinate system we consider the homogeneous solution of 
the Lame equations in plane problems on the steady vibrations of a ring Rr<f<R,, on whose 
edges r= Rx and r-R, arbitrary homogeneous conditions are given, analogous to the 
conditions for the problems of Sect.1. If the eigenfunctions of such problems are written 
in the form 

u,~ = W,‘(r) cos d,qpei~f, urpk = V,‘(r) sin ~l;t9)tW (2.1) 

where a,(k= 1, 2,. . .) are the eigenvalues, then the corresponding stress tensor components 
will take the form 

(2.2) 

As in Sect.1, by using the system of equations for WkO and Vk" we can evaluate the 
integral 

K, I ~[U~~(~)~~~(r)- zR(r) WkO(r)]dr= (2.3) 
R* 

r ha - a,s)-z [aXVnoTRo - dSVroznO + a,W,%& - a,W~‘%~,J~ 

It follows from this last relationship that for any homogeneous boundary conditions of 
the type (1.4) we obtain the GOR 

WlrnO = 0 (2.4) 
if aka # ana and all the ak are Simple eigenValUe.S. 

We note that, as in (1.9), thevalue of the integral (2.3) is independent of the form of 
the boundary conditions, and the case when one of the particular solutions is inhomogeneous 
will also be utilized later (Sect.4). 

The relationships (2.4) are also valid for o = 0 and agree with those already known 
/z, 3/. 

The GOR (1.6) and (2.4) afford the possibility of an effective investigation of a broad 
class of axisymmetric problems for the sector of a spherical layer and plane problems for an 
annular sector by using homogeneous solutions. The method described in /5, 6/, say, can be 
used to solve such contact problems when mixed boundary conditions are given on spherical and 
cylindrical surfaces. 

3. We consider the static (o = 0) contact problem for an annular sector Rl<rdRzT 

lcpf<Y for the impression of a stamp in the face r= R,, let the face r = Rr here lie 
without friction on a rigid foundation, and let there be no tangential stresses and normal 
displacements (Fig.11 on the faces cp = f y. 

The boundary conditions of such a problem are (6 is the stamp displacement) 

U, = 6 coscp (r = R,, I cp I < 0) (3.1) 



0, = 0 0. = Rm e < I ‘p I c Y) 
z, = 0 (r = R,, P = RP) 

u, = 0 (1. = I?,) 

~,=o,u,=o(IcpI~l9 

Under conditions (3.1) we will seek the solution of the Lam6 equations in the form 

u,@,(p)= u!" - z$', z&#(r,(p)= @-- ug' (3.2) 

where u,(l), @ are the solution of the Lam; equations for the ring when the following 
boundary conditions are given: 

(3.3) 

where u,(*), z+(a) are the superposition of homogeneous solutions of the Iam& equations for a 
ring when the following boundary conditions are given: 

Q, (R*, cp) = r, (% cp) = 0, r,, (R,, (P) = u, (R,, 9) = 0 

In this case the solutions of the Lam& equations with boundary conditions (3.3) have the 
form 

while the corresponding stress tensor components are 

(3.4) 

(3.5) 

The functions WE (r), Vr (r).), e&r), rk (r) and oak (r) in (3.4) and (3.5) are known (later only 
Wg(r) and A(k) are needed); q(t) is the contact pressure distribution function that must 
be determined. We have 

U!*'~BDrW1"(r)cosakcp, n$'=x DkVk”(r)sin akv (3.6) 
(1) 

UP = & x Dkolk (r) cos ak% q= r’r q 

d”) = E w * 2 Dark0 (r) sin a$$ 

Summation here is over all the zerosak of the function A(ak) in the right half-plane. 
Note that A (k) = A” (k) (k > 2). 

Therefore, the functions (3.2), (3.4), (3.6) satisfy the Lam& equations and the boundary 
conditions (3.1), except the first and last, which now take the form 

u!')(Rs,cp)--11!8)(Ra,(P)=6coscp (I9l<e) (3.7) 

u!$ (r, y) - z&? (r, y) = 0, d$ (r, y) - d$ (r, v)= 0 (RI < r < R8) 

we will represent the unknown contact stresses in the form 

q(t) = -% [g@(t) + k$lo,wko(&)p,(t)] (3.8) 

BY satisfying the first boundary conditions in (3.71, we obtain a number of integral 
equations to determine qk (t)(k = 0, 1, 2,. ..) 

&qo = COS cp; Kwqk = CO8 ak% k 2 1 (1 Cp ! < 0) (3.9) 

where the integral operator K o can be reduced to the form 
e 

K,q s 
s M (t - 9) q (t) dt9 

= Wk(R2) 

43 
Wv)=f~~cosky 

k=3 
(3.10) 



80 

when the evenness of the function ~(1) is taken into account. 
We rewrite the last two conditions of (3.7) in he form 

m 
2, DhVkC(r)sinaky== @(r, y) 

We multiply the first relationship by sVno 

by w," 

and subtract the second relation multiplied 
from the equality obtained; we then integrate the exression obtained within the limits 

R, and R2. Using the GOR (2.4) we obtain 

(3.11) 

Taking into account that the pairs of functions V,,, W,, and Vao,W,,o satisfy the identical 
system of equations, the inteqral from (3.11) can be evaluated by using the integral (2.3) 
and boundary conditions (3.3) and (3.4) 

Since 

expression (3.11) can be converted to the form 

(3.13) 

Substituting (3.8) into (3.13), we obtain an infinite system to determine the coefficients 
Dk 

do 

Yk=h + zd 'k,,Yn (‘= 1,2, ’ . .), 
k-1 

DX = wko (Raisin s k y  

(3.14) 

It can be shown that Tkn = T,k. 
Therefore, formula (3.8) is obtained to seek the contact stress distribution function 

under the stamp, where i&(t)are found from the integral Eqs.(3.9) and (3.10) while &. are 
found from the infinite system (3.14). We note that analogous contact problems for a circular 
ring reduce to (3.9) and (3.10). Therefore, the problem of solving the contact problem for an 
annular sector is here reduced to the contact problem for a ring already well studied. More- 
over, the infinite system (3.14) refers to the type of normal z?oincar&Koch systems, i.e., its 

coefficients bk and ak,decrease as the numbers in the exponential grow, as will be shown 
below. Therefore, its solution can be obtained by the method of reduction for any values of 
the parameters. 

As is seen from (3.8)-(3.10) and (3.14), only the expressions wk(&) A-' (is), wk"(fi#)S 
wkk’ and the eigennumbers akare needed to investigate the solution of the problem. It is 
easy to obtain the mentioned expressions (see /7/, say) and they are not presented here: we 

merely find the asymptotic form of the numbers a, for laxge k. As has been noted, czk are 

the roots of the equation 

A” (q) zcz 2 (I - v) ch (2~ In x) + 4 a,& (2~ In x) + pLo uk2 - 
2 (1 - v) = 0, x = RJR, 

(3.15) 

pLo = %Z (1 -t_ Y) - x- 2 (3 - Y) + 2 (1 - Y) 

It can be established that for large numbers the roots of this equation have the follow- 
ing asymptotic form: 



which, in turn, 
infinite system 
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Qk Iv Iln (I "JLO (21nx)_'1 (k - V,)) + i 2x (k - ‘/,)I (2 Inx)-’ (3.16) 

enables us to estimate the matrix elements on the right-hand side of the 
(3.14) for large k,n 

f3k = x (k - ‘/,)/In x 

where Pk and Pk, are boun&ed quantities. This confirms the fact that the infinite system 
(3.14) refers to the type of normal Poincar&Koch systems. 

Remark. lo. The relationship dk= ojexp(- &fy-@))I is satisfied for the elements dk = DkWh" 

(%) Pk @) of the series (3.8) for any Itj<e and large B, and therefore, for itI< the 
series (3.8) converges not more slowly than the sum of terms of a geometric progression with 
denominator less than one. 

2O. Taking account of the asymptotic form of the function w;r @,)/A(k) for large k, the 
kernel of the integral Eqs.(3.9), (3.10) can be represented in the form 

M(u) = - (3.18) 

or 

2& 
M(u) = n(1-g) 

LX cth(2kInx) c k ~0s ku -I- Fs (P) 
k=o 

(3.19) 

where FL{& and Fp (B) are continuous functions for all fvl<M<m. Bte representation of 
the kernel in the form (3.18) enables an effective solution to be obtained for the integral 
Eqs.(3.9), (3.10) bythemethod of orthogonal polynomials /O/, while the representation (3.19) 
permits exact inversion /9/ of the principal part of the integral operator of (3.9) and (3.10) 
and their reduction to integral equations of the second kind. 

A. As in Sect.3, the same contact problem can be considered on the impression of a stamp 
in the spherical surface of a spherical layer sector in the case of axial symmetry jFi.g.2). 
In this problem the contact stresses under the stamp are 

Here 8 is the stamp displacement, q,,(t)@ = 0,1,2,...) are determined from the integral 
equations 

K,yaz_SRq(l)sintdtt '"'@) '"2+' -- P,(cost)P~(C09 cp) 
0 *Go * tk) 

and the &, are found from the infinite system 

(4.3) 

The notation in (4.1)-(4.3) is taken by analoqy with the precedfng problem, wX* (W 
corresponds to the homogeneous problem, W (Rp)IA (k) to the inhomogeneous problem, and ox: to 
the roots of the equation A(ak) in the right half-plane. Without investigating series (4.11, 
the integral Eqs.f4.21, and the infinite system (4.3), we note that here, as in the problem 
of Sect.3, it can be shown that the elements bt and akn of system (4.3) decreases as the 
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numbers increase in the exponential, the series in (4.1) converqes no more slowly than the 
sum of the terms of an infinitely decreasing geometric proqression, while the solution of the 
integral Eqs.(4.2) can be obtainedbyusing a large set of effective methods including the 
asymptotic methods developed for a similar class of equations (/la, ll/, for instance). 
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DYNAMIC PROPERTIES OF AN ELASTIC SEMIBOUNDED MEDIUM IN 
THE PRESENCE OF TWO MASSIVE STAMPS* 

Translated by M.D.F. 

E.I. VOROVXEi, O.D. PRY~INA and O.M. TUKODOVA 

The dynamic properties of a system consisting of two massive rigid strip 
stamps and an elasticsemi-infinite medium axe investigated. A layer, a 
cylinder, a multilayer foundation, etc., can be selected as such a medium. 
The method of fictitious absorption is used, which are developed for one 
stamp in /lf. Unlike other approaches to solve there problems /2-4/, 
this method enables one to describe, to any degree of accuracy, the 
behaviour of contact stresses simultaneously at all points of the contact 
domain, both inside and on the boundary. 

The presence of resonance frequencies of four kinds is established in the system. Among 
the first kind is the value of the frequency xp+, starting with which the system has no 
energetic solution and waves propagate therein that have only geometric damping. The 
critical frequency here is independentofthe stamp characteristics and is determined just by 
the geometric and dynamic properties of the waveguide. The second kind of resonances is 
characterized by the frequencies to which multiple roots correspond, i.e., the poles of the 
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